Anderson's bridge

<u>Aim</u> : - To measure the self - inductance of a given coil by Anderson's bridge method.

<u>Apparatus</u> :- Inductor, standard capacitor, resistors (fixed resistances and variable pots as given in the circuit) signal generator, head phones and connecting terminals.

Formula :- Inductance of given coil $L = C [(R_1+R_2)R_5+R_2R_4] mH$

Where $C = Capacity of the standard capacitor (<math>\mu F$) $R_2,R_3,R_4 = Known$, fixed and non – inductive resistances (K Ω) $R_1, R_5 = Variable resistances (K<math>\Omega$)

Description :- Anderson's bridge is the most accurate bridge used for the measurement of self – inductance over a wide range of values, from a few micro-Henries to several Henries. In this method the unknown self-inductance is measured in terms of known capacitance and resistances, by comparison. It is a modification of Maxwell's L - C bridge. In this bridge, double balance is obtained by the variation of resistances only, the value of capacitance being fixed.

Procedure :-The circuit diagram of the bridge is as shown in the <u>figure</u>. The coil whose self-inductance is to be determined, is connected in the arm AB, in series with a variable non-inductive resistor R_1 . Arms BC, CD and DA contain fixed and non – inductive resistors R_2 , R_3 and R_4 respectively. Another non - inductive resistor R_5 is connected in series with a standard capacitor C and this combination is put in parallel with the arm CD. The head - phones are connected between B and E. The signal generator is connected between A and C junctions.

Select one capacitor and one inductor and connect them in appropriate places using patch chords. The signal generator frequency is adjusted to audible range. A perfect

balance is obtained by adjusting R_1 and R_5 alternatively till the head – phones indicate a minimum sound. The values of R_1 and R_5 are measured with a multi-meter(While measuring the R_1 and R_5 values, they should be in open circuit). In the balance condition the self – inductance value of the coil is calculated by using the above formula. The experiment is repeated with different values of C.

<u>**Precautions**</u>: - 1) The product (CR_2R_4) must always be less than L. 2) R_1 and R_5 are adjusted until a minimum sound is heard in head – phones.

Result :-

<u>Table</u>					
S.No.	Capacity (C)	Resistance (R ₁)	Resistance (R ₅)	Calculated value (L) C [(R_1+R_2) $R_5+R_2R_4$]	Standard value of L
	μF	Ω	Ω	mH	mH
1.					
2.					
3.					
4.					
5.					
6.					
		A R ₄	1К 🦳	C C C C C C R ₃ 1K	
			* * * *	*	